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Abstract

The effect of a surface nuclear blast on a deep und

ground tunnel was studied using elastic-viscoplastic theor -

Quasi-static and quasi-transient loadings were analyzed us
a finite element model developed herein.

The computer program used is a two-dimensional plan
stress/plane strain code using constar.t strain triangle
elements. Constitutive equations proposed by Drucker and
Prager were incorporated to account for the compressibilic
inherent to rock material. Plasticity was generated using
the Drucker-Prager yield criteria incorporated in the Malv
flow law. Both viscoplastic and elasto-plastic material
behavior were modeled using the viscoplastic theory.

The quasi-static analysis compared excellently to

material behavior displayed in field studies and experiuct..

work., Results obtained through the quasi-transient analys

give an appreciation of possible plastic zone growth.

Additionally, a modification to the Drucker-Prager equatic: .

was proposed and found to show less plastic strain than wn
full equations. This is promising when considered in 1ligq:.
the fact that the Drucker-Prager equations have been known

allow too much plasticity at high pressure levels.
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VISCOPLASTIC ANALYSIS OF A "CNTINUOUS
CYLINDRICAL OPENING SURROUNDED

BY VOLCANIC TUFF

I. Introduction

Background
Until the mid 1970s, the United States based its in wr-

continental ballistic missiles (ICBMs) in shallow undergro nd
concrete silos. This system was considered sufficiently
protective to allow the United States o survive a "first
strike," thus, giving a "second strike" capability.

With the advent of higher yield warheads couplea w. @
increasingly accurate delivery systems, the protectioun pic
vided by the silo system became suspect, and the searc:. ¢ a
new ICBM basing system began. One of the ideas which cun
out of the search is the Deep Missile Basing System, which
envisions a network of tunnels dispersed throughout a iar.
mass called a mesa. These tunnels are buried within thu
mesa, and are subjected to the natural in situ stresse:,
well as the dynamic stresses resulting from the spher:cal.
propagating stress wave generated by a contact or near-..:. .CC
blast (sece Fig 1) (Ref 1).

The survivability of deep underground tunnels 1.

function of both the strength of the employed tunnel

P v 4 -;.L;J
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Cutaway of Deep Underground Missile Basing Syst
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hardening measures (concrete liners, stecl liners, rock
bolts, etc.), and the strength of the surrouniing rock.
Economic tunnel design dictates minimum use of hardening
techniques, taking advantage instead of the protective roc
surrounding a tunnel (Ref 1). Therefore, the state of str ss

in the tunnel/rock system must be estimatecd,

Aggroach

Experimental results reveal that loading near tunnc
levels from a surface nuclear blast causes failure in unli cd
tunnels, characterized by a distressed or loosened zone of
rock at the springlines (the springline is perpendiculur =«
the maximum load direction), and tension cracks at the cro ..
Since faillure normally indicates plastic action, an elusti. -
plastic analysis is in order,

The Drucker-Prager plastic mate..:l model represent
one of the idealizations of real rock which entails apprown "tate
elastic constants, a yield function and a flow rule. Tiro
important characteristics of the real stress-strain curve
are reflected in this model. First, clastic response iz
pronounced at lower loads. Second, as load is increascua
toward ultimate, the actual_stress-straln curve has alsre...
bent over considerably so that the tangent mcdulus at va.:
stage is a small fraction of the init:al elastic modul..:.

The perfectly plastic model represent: o zero tangent oneo
Finally, the plastic behavior of rock 1s obscrved by navin g
residual strain when a complete uniocading takes place Loy

3




the elastic range. This is in contrast to the nonlinear
elastic idealization where unloading follows the initial

path and the strain is fully recoverable. This last chara.'-
teristic gives a distinction between a plastic and an elas:'ic
rock and, in the most fundamental sense, rock has been knoin
to be a plastic rather than an elastic material (Ref 2).

The rock/tunnel system will be modeled using the fiiite

element method, with an in-house code namad VISCO. The ro

will be treated for simplicity as a continuous and isotrop

(@]

material. For the depths and yields of interest to deep
missile basing systems, the pressure wave from a nuclear b ast
will probably have a significant rise time, on the order o

1 to 10 transit times, and be of fairly long duration, 100 ro

200 transit times; in effect, making a quasi-static (stecad

(¢

state) approach appropriate. A quasi-transient analysis w .1

also be done using appropriate rise times for each load lc¢ o1,

Objective

The objective of this thesis is to analyze the stre: =
around the tunnel uhder the conditions of qguasi-static and
quasi~transient loading. This will be accomplished using
viscoplastic theory incorporating the Drucker-Prager mator al

model developed in Chapter II.
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II. Theory

Plasticitx

The behavior of materials beyond the elastic range
termed plastic, and can be characterized by an incomplete
instantaneous recovery of strain upon removal of stress, a
change in strain with time under constant load, a change 1i.
stress with time under constant deformation, a variation o
mechanical properties with applied stress, or a variation  .f
mechanical properties with temperature, direction, and pcs tion
in the body. Thus, the implication is that the theory of
elasticity can be used to make the first approximation or
stresses, strains, and deformations in a structure under
specified loading, and that various inelastic (plastic)
theories can be used to estimate the deviation from elasti
behavior that may occur and to estimate the total loads trn L a
given structure can support before excessive deformation,

fracture, or disintegration occurs (Ref 4).

Plasticity in Metals

Based on the above paragraph, total strain in a muat :1ial

can be written as

total elastic plastic
Cij = Eij + Lij \ )
The onset of plastic deformation (or yielding) is govoiin VS

a yield criterion, and post yield deformation ovccurs ..

greatly reduced material stiffness. A yicld criterion cua:. e




o e

written in the form f(oi.) =k , where f 1is some func.ion

]
and k 1is a material parameter to be determined experimen

Experimental observations by Bridgman (kc¢f 3) indicate tha

plastic deformation of metals is essentially independent ¢

hydrostatic pressure. Therefore, yield criteria can now o -

written as f(JE,Jg) = k , where J5 and Jg are tho s

and third invariants of the deviatoric stresses

- = -1
O:: = O 3 8

ij ij ijokk

One of t?e simplest yield criterion is the Von Miuc

T
criterion (JE) = k shown in Fig 2, which depicts the vi
surface and the locus of points upon wiich the principal

stresses sum to zero (m plane). This may also be written

G

where

l P -

N

and 0 is termed the effective stress, a stress invariarnt
measures the incremental change of the yield surface tu ...
overstress. For the case of uniaxial tension (¢, = ..

{3k is the uniaxial yield stress. For yielding to ocucur,
1 1

(3;)

test. The Von Mises yield criterion implies that, 1t

must reach the value of (Jé)‘ in o uniaxial

of stress lies on the yield surface, plustic flow cvccu: ..

the state of stress is within the yie¢la surrtuace, elast.c

6

(2.2

1
H(Ji)z = [3x (-,

ally.

‘wund

‘1d

mal

3)

alns




Fig 2. Geometrical Representation of the Von Mises Yield
Surface in Principal Stress Space
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occur.' During plastic straining, this yield surface expands
normal to itself (normality condition), thus, enforcing
isotropic hardening within the plastic zone.

After the onset of plasticity, a so called equivalent
yield stress function can be evaluated such that a gauge on
plastic flow can be observed, and which increases as a function
of the plastic. strain. The equivalent yield stress can be

written as
Y =0 + He (2.5)

where °y is the uniaxial yield stress, H is the slope of
the strain-hardening portion of stress-strain curve, and Ep
is the plastic strain equivalent (Ref ). Y 1is used as a
universal stress-strain curve that governs the material's
uniaxial inelastic behavior during loading, and is valid only
when used with monotonically increasing loads. Once the onset

of plasticity has occurred, increased plasticity will result

only if o exceeds Y .

Plasticity in Rock

Rock differs from metal in terms of plasticity because
rock is a compressible material. While metals have one stress-
strain curve, rocks have several which are a function of the
confining stress 0, = 03 . An increase in confining pres-
sure significantly increases the compressive strength of rock.
Most ductile materials have a fairly long plastic range before

fracture occurs, where as brittle materials such as most
8




rocks have a very limited plastic range, if any, for -uniaxial
tension or compression. However, for triaxial loading, most
brittle materials tend to show a plastic region where permanent
deformation occurs. A yield criterion which accounts for
hydrostatic stresses is the Drucker-Prager yield criterion

(Ref 2), which modifies Von Mises by including Jl , the first
stress invariant (J1 =0y +t 0,5+ 033) . Following the same
analogy as with the Von Mises (including the normality condi-

tion), the Drucker-Prager criterion car be written as

1

-, - T -
aJ + (J2 ) =k (2.6)

1

Therefore, plaftic flow begins when the effective stress

o = ad, + (Ji)7 exceeds k™ ; k”° can be thought of as the
yield stress, which in this case is a constant. The constant
o describes the dilatation rate of soil, dilatant behavior
being a volume increase under compression (Refs 6, 7, 17).
Digressing somewhat, the Drucker-Prager yield criterion is an
approximation to another criterion, the Mohr-Coulomb yield
criterion. Note in Fig 3 that two Drucker-Prager yield
surfaces are required to satisfy Mohr-Coulomb at the apices.
Varying the radii is accomplished by using two equations for

a and k° . For the outer apices (BDF)

. = 2.8ino and k- = 8¢ _(cos¢) (2.7)

JE (3-sing¢) J3 (3-siny)

and for the inner apices (ACE)




oYYy

-9

Line of pure )

shear (¢ = 0) DRUCKER - PRAGER

Fig 3. Two-Dimensional Representation of the
Drucker-Prager and Mohr-Coulomb
Yield Criteria
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—w, v

2 sing and ](=6c {coso) ’ (2.8)
J3 (3 + sing) I3 (3 + sin¢)

C is the cohesion coefficient, a measure of the shear resistance
between any two particles in a rock mass; shear resistance

is the combined effect of cohesive resistance and frictional
resistance. ¢ is the angle of internal friction, and is
related to the ' fracture plane of a specimen occurring under

a triaxial state of stress. Studies dealing with softer

rocks and soils (Refs 10, 11) use Egq (2.8), while Eq (2.7)

. apply to stiffer materials such as harder rocks or concrete.

Viscoplasticity

A time-oriented viscoplastic finite element code called

- VISCO is used in this study. Time rate effects are always

( present to some degree in all inelastic deformations. Whether
or not their inclusion has a significant influence on the
prediction of the material behavior depends upon several
factors. 1In the study of structural components under static
loading at normal temperatures, it is accepted that time rate
effects are generally not important and the conventional
theory of plasticity, as described above, models the behavior

adequately. However, some materials, especially at high

temperatures, exhibit simultaneously the phenomena of creep

and viscoplasticity. Creep can be defined as a redistribution
vf stress and/or strain with time under elastic material

response while viscoplasticity is a time dependent plastic

11




............................................

deformation (Ref 5). A viscoplastic analysis increments time
under full loading, while an elastic plastic analysis incre-
ments only the load.

The concept of viscoplastic material behavior is detailed

through the use of the one-dimensional rheological model in

Fig 4. The friction slider develops a stress O9p  +

becoming active only if o > Y , where Y 1is as above. The
ﬁl excess stress 0q =0 = op is carried bv the viscous dashpot.
| Instantaneous elastic response is carried via the spring.

This model, specifically the dashpot, allows the stress level
to instantaneously exceed the value prescribed by plasticity

theory, the solution tending to a steady state condition with

time (Ref 5).

(i‘ Viscoplastic strain in rate form can be written as
VP oF
€44 = Y< ¢(F) > 30 (2.9)
where
<¢(F)> = ¢(F) for F >0 (2.10)
<P(F)> =0 for F <O (2.11)

Y is a fluidity parameter controlling pl.stic flow rate, and

is normally derived from uniaxial yield tests. %g is the flow

vector a for the associated plasticity which governs strain
[ in the plastic region. The form of <+ (F) wused in VISCO is
[
@ o(p) =(F - F0> (2.12)
Fo
12
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Fig 4. One-Dimensional Elastic-Viscoplastic Model
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where F corresponds to o (effective stress) and ‘Fo
corresponds to Y (equivalent yield stress) as described
previously. Using the Von Mises flow vector (Ref 5) results
in the VISCO definition of the viscoplastic strain rate

VP - e,
€55 = Y[E - 1] I3 oij (2.13)
Y 2 ‘[-3;

where Oij are the deviatoric stresses.

Using the Drucker-Prager flow vector and recalling that
1
Y =k” and 0 = aJ, + (J5)? the viscoplastic strain rate

can be written as (Ref 6)

.vp o

where

or.
a;, = o+ ———1 when i =3 (2.15)
J 2(J5)2

°oij L
a.. = 7/ when 1 # j (2.16)
1) (J')I
2
The generated plastic strain rates are multiplied by a time
increment to yield plastic strains. As noted earlier, &
steady state analysis will also be done. Under this condition,
the key to using VISCO is the fluidity parameter vy .
Perzyna showed that the constitutive equations of plastic

flow theory result as a limiting case from the more gencral

14
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constitutive equations of the viscoplastic theory as’ vy
approaches infinity (Ref 6). The defi:uition of steady state
considering a finite Yy in conjunction with Eq (2.14) will

be discussed later.

15
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III. VISCO Computer Program

VISCO is a plane strain/plane stress finite element
code utilizing constant strain triangle elements. Because the
program was initially designed for crack growth analysis, it
uses a Gauss~Seidel iterative solution technigque employing
the initial stress method (Ref 10) to solve the equilibrium

equation

[k1{d} = {R} (3.1)

where [k] is normally highly banded and stored in compacted
form (retaining only non-zero terms), and {d} is the nodal
displacement vector.

As indicated above, once an ele..ent yields, the equiva-
lent yield stress increases as a function of the plastic
strain. This can be thought of as nonlinearity induced through
material property changes. Two procedures exist to account for
the effects of plasticity: one procedure reformulates the
matrix each time an element expericnces plastic deformation
and is, therefore, both time consuming and expensive. 't'he
second procedure is called the residual force method in which
the elastic stiffness matrix is used throughout the analysis
and the effects of plasticity are tre. ted as an applied load
to be added to {R} .

If the elasto~plastic stiffness matrix is written as

(3.2)

——t, i A PN R S S G

CoE s e smen s e




where [k]€ is the correction to the elastic stiffness matrix
- at a given stage in the analysis. Equation (3.1) for a

particular load increment i becomes

(k1B - [x;1% (aq,1 = (eR,) (3.3)
and

tk]E (ad;} = (oR;) + [k,]€ (a4} (3.4)
Defining

(ad;} = (84;)% + (ad,)" (3.5)

where {Adi} is the incremental displacement

. then
(¢
E E _ C E
[K]® ((aa )% + (8a;F) = (#R) + [k,]C ({ed;}
+ (sa )P (3.6)
from the elastic analysis
E E_ .,
o [k]™ {ad;}" = (¢Rr,) (3.7)
t.
;' so that
f fL1E P _ C (.4 E g 1A=
%‘ (k1™ {aqd;} (k17 (Hea ™ + {ad;1)=2P  (3.8)
3
[ In short, the additional displacements due to plasticity cun
[ be solved by applying a corrective for:e P to the elastic
E‘ system (Ref 11).
b
! 17
|

}
4
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The residual force method can be utilized even for a
viscoplastic soluticn by incorporating a time step algorithm
as follows (Ref 9):

i-1 i

1. Increment time so that t = t + dt

2. Compute the plastic strain incremgnt as described in
above Egs (2.14), (2.15), {défgﬁ'= {;fg}i dt# and add to the
preceding plastic strain,

3. Compute the plastic load vector

. f .
eyl = 7o [B] [k] (&R avol
vol J

where [B] 1is the constant strain triangle strain-displace-

ment matrix.

4. Compute the external load vector

.

[

(R} = (R} 4 {ﬁ}d£;
5. Compute nodal displacements

(art = k)7 (it o+ il
6. Compute current total strain

{eg51t = [B] {art

7. Compute current stress

PR i _ P i
{°ij} = [k] ({cij} {Lij} )

18




8. Insure the viscoplastic strain rate {ifg}l in
each element has reached tolerance limits and, if so, then

repeat steps 1-8 until desired simulation time is reached.

19
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IV. Rock Mechanics

The state of stress at a point strongly influences
the strength, stiffness, ductility and creep properties of
rock. Figure 5 shows variation in confining pressure,
0y = 03 versus axial strain for Sandston (Ref 13). Here, as
in the remainder of this report (unless otherwise noted), all
displayed streéses are compressive., The increase in confining
pressure results in a significant increase in ultimate strength
as well as a larger strain at failure. Also, plastic strains
before ultimate failure (fracture) increase with confining
pressure. The Drucker-Prager yield criterion accounts for
confining pressure by including the first stress invariant
(Jl in Eq (2.6)), and also through the two material parameters
C and ¢ defined above. C and ¢ are normally derived
from triaxial test data using Mohr's circles as shown in
Fig 6. Note that oy values are stresses at failure; in
essence, the circles represent the material failure surface as
a function of confining pressure. An alternative method was
used here, in which C was derived from a known ¢ value
and uniaxial test data. Using the spherical stress component
Ox + i; * °2  and recalling that Oy = iﬁ—%—gi then

Ox

o
for a uniaxial test I = = and oxy = 7; which yields a

point on a plot of oxy versus I (not shown). Using a

I =

sponsor supplied (from an unpublished report) slope of . = 18°

a Oxy intercept is determined and is used as the valuc for

20
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C (in equation form C = ox(§ - $tanl8°)) . Using this

- method with given (Ref 7) triaxial data generated C values
within 10% of known values., All material values for Tuff as
used in this effort are presented in Table 1 (E, ¢, and v

were supplied by the sponsor; all others are derived).

TABLE 1

Tuff Material Parameters

3 Parameter Value
3 E 1.15E6 psi
¢ 18°
(o 980.7 psi
Kk~ 976.4 psi
a .1078
v .33
23




V. Modeling

Mesh Size

Since the size of the modeled section for this study
had the potential to become very large, it was necessary to
discover early a satisfactory mesh size limit. Mesh grading
was also considered in conjunction with appropriate aspect
ratios, where Aspect ratio (AR) is the ratio of triangle height
to width (not greater than AR=3) (Ref 14).

Timoshenko (Ref 15) gives a closed form elastic solu-
tion to the problem of a hole in a plate under uniaxial tension
or compression, based on a ratio of d to a , where d is
the plate half-width and a is the radius of the hole (Fig 7).
Values of the stress concentration factor kc at the crown
and springline were used as the basis for determining the
fineness of the mesh around the cutout. The radius of the
hole is problem dependent; thus, determining d for any given
d/a ratio. Arbitrarily selecting a d/a ratio of 5, with
a given as 60 inches, yields a d value of 300 inches for
the half-plate width. Using an element size of 6 inches by
12 inches (AR=2) near the hole yielded values of 2.97 for oy
at the springline, and -1.01 for o, at the crown. Comparing
to Timoshenko's values of 3.08 for oy and -1.0 for SN

gave acceptable errors of 3.56% and 1.0% resgpectively.
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Model Size

The in situ state of stress in a geological mass is the
natural state of stress at any given point. Baker, et al
(Ref 11) used a finite element model employing both elastic
and elasto-plastic theory to analyze a deep tunnel in a rock
mass. Setting both horizontal and vertical boundaries at
10 radii (600 jinches) gave elastic in situ stresses in agree-
ment with Baker's (maximum errors of 4.0% for oy and 6% for
o, ona horizontal axis through the tunnel, see Fig 8).
Summarizing, the model is 600 inches square with 323 nodes and
576 elements. The smallest elements «.o 1rext to the cutout and
are 6 inches by 12 inches. As Fig 9 shows, boundaries not

loaded are fixed to move in only one direction.
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VI. Program Verification

One-Dimensional

To verify the changes made in VISCO to employ the Drucker-Prager
elastic-perfectly plastic material model, a one-dimensional viscoplastic
analysis was done using a plane stress, simple tension, two-element model.
Owen (Ref 5) notes that for this case, a stress unbalance will always exist
and steady state conditions cannot be achieved using the initial strain

approach of VISCO as would be expected. In equation form

2 . i_ “j
€ p vlo (cy + He vp)] (6.1)
but since H =0
c‘i - -i .
€up vlo °y] (6.2)

where (ol - cy) is the stress unbalance. Using the algorithm described in
Chapter III where stress strain relationships are in terms of the elastic
stiffness, Ao or the increment of stress between time steps can be written

in the following form:

ao = E(ael - ael ) (6.3)

The two element case was run over a period of ten seconds and the stress
incremerit anproaches zero as it should so that response is contributed to

the time interval size. For

29




Ao = E(Asi - Asivp) =0 (6.4)
or
j i '
Ae’ - Ae vp (6.5)

Fig. 10 shows a delay in acquiring the zero Ac A4c # Aevp). This can be
attributed to the size of the time interval incorporated into the viscoplastic
equation. The smaller the time step the closer the differential strains.

The Visco model responded as indicated by Owen in that there is always a

stress unbalance. Marcal (Ref 8) has shown that a time independent approach

(non-visco) would produce a singularity for the same conditions.

Two-Dimensional

The Baker, et al (Ref 11) elastic-plastic tunnel analysis was used
as another verification of the Drucker-Prager model used viscoplastically.
Previous analysis showed that a stress concentration exists around the cutout
when analyzed elastically. Note in Fig 11 the comparison between the oy
stresses developed in the elastic solution and those developed in the elasto-
plastic solution along a horizontal section through the tunnel. Steady state
conditions were achieved using a fluidity parameter y of 1.0 in2/1bf-sec
Steady state is indicated by a zero strain rate (Eq 2.14) in all elements.
The results illustrate the fundamental principle that plastic flow tends to
relieve the high stress concentrations that would ordinarily deve]qp
in perfectly elastic materials. Because stresses are redistributed,

note that the wvisconlastic stresses exceed the elastic stresses

as distance from the cutout increases. These
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results compare well with Baker's; within 15% for cy and
within 5% for Oy -«

Due to the high cost and lengthy computer time required
for solution of the equilibrium equation when using the 576
element model, a new model was developed (Fig 12) containing
only 238 elements, The 576 element mcdel (fine mesh) required
computer time (CPU time) of 700 seconds at a cost of $52.34
to solve Baker's elastic-plastic problem, while the 238 element
model (course mesh) required 285 seconds at a cost of $20.38.

A comparison between the two meshes in terms of stresses Oy
and cy along three representative radials is detailed in
Figs 13-18; note that the two meshes do not vary by more than
108, The accuracy developed by the ccarser mesh versus its
lower cost, dictated use of the model (or the remainder of the
study.

The final comparison designed to validate both program
and model contrasts material movement generated experimentally
(Ref 1) versus material movement predicted using the theory and
model developed thus far. Using loads that approximate loading
at tunnel levels from a nuclear blast, resulted in nodal
displacements presented in Fig 19. ©Note that in the vertical
direction, most material moves up away from the cutout while the
node at the springline moves in the opposite direction buccause
the cutout provides no support (all cutout nodes collapse

inward). This compares excellently with experimental results,
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VII. Results and Discussion

Quasi~Static Analysis

Two different loadings are considered in this section

and in the following section, representing either varying

nuclear weapon yields, varying tunnel depths, or both. 1In

situ loads were also considered, and are merely added to the

T

pressure wave loading. For convenience, the lower magnitude

L ggnen, vt
]

loading will be referred to as 1/4 kbar (1 kbar = 15,000 psi),
the higher loading as 1/2 kbar locading. The weapons effect
loading shown (Figs. 15, 16) can be attributed to wave propa-
gation studies as indicated in Reference 1.

Figures 20 and 21 show the plastic zone developed for

1/4 and 1/2 kbar loading respectively, using a Yy value or
1.0. The reader should recognize that even though a steady
state solution is being carried out, a relatively small value
for Yy 1s being used. This value simply means that stecady
state is obtained after a longer period of time compared to
larger y's . Note that the plastic zone envelopes the c¢ntire
cutout for the larger load and that the vertical applied

stress (3475 psi) for this larger load has increased in greater
proportion than the horizontal stress between the two cases.

Figures 22 and 23 display tunnel deformation for the 1/4 and

1/2 kbar cases respectively. It can be seen thac the 1/2 nbar
case experiences much larger deformations than the 1/4 kbav

[ case. Also note that the major deflection occurs at the crown

for the 1/4 kbar loading, and at the springline for the 1/2 kbar
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case. The much larger deformations for the 1/2 kbar loading
are due to both the increased locad and the fact that the entire
tunnel is experiencing plastic deformation. Figure 19 shows
nodal displacements in the model for the 1/4 kbar case; dis-
placements are similar for 1/2 kbar loading (Fig 24). Both
show springline area displacements consistent with experimenta-
tion (Ref 1).

Figure 25 compares plastic zone stresses along a 45°
radial between the two cases, where positive values denote
ccmpression. The effective stress ¢ for all elements in
the plastic region is the same (976.4 psi), despite the much
larger stresses experienced for 1/2 kbar loading. It was
noted earlier that plastic flow redistributes high stress
concentrations. This redistribution o. c¢tresses is clearly
seen here because the much larger stresses developed in the
1/2 kbar case versus the 1/4 kbar case still produce an
ceffective stress equal to the constant yield stress k~ .

Note the variance in nodal displacements displayed in Figures
19 and 24. Because the Drucker-Prager yield criterion accounts
for hydrostatic stresses {(compressibility), a large amount ot
material movement through compaction and crushing occurs.

Thus, the e¢ffective stress equals the vield stress for two
reasons: relative displacements are i .t as large as they
initially appear, and the model will only allow the ertoective
stress to cqual the yield stress in the plastic zone tor stoady

state conditions (contrasting the results obtained below) .,
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However, this yield stress does not correspond to a unigue
strain level, as shown in Figures 26 and 27 which display
effective plastic strain (Eq 3.2 below) contours in the plastic
zone for the 1/4 kbar case and the 1/2 kbar case respectively.
The larger effective strains in the 1/2 kbar case (at least 6
times greater) indicate more straining occurring, which explains
that case's larger plastic zone,

Twenty-four elements in the 1/2 kbar loading model
experienced tension in one or both component directions (x or
y). These elements were all within 27 inches of the cutout and
on radials from 11° to 90° from the horizontal (note that
Fig 25 shows no tension because plotted stresses are averaged
between two adjacent elements and compression always dominated
tension). However, 9 of the 24 tension elements were concentrated
between the 85° and 90° radials. This concentration of tensile
stresses is appropriate when viewed in terms of material
movement at the springline depicted in Fig 24. The 1/4 kbar
case also had tension elements, although fewer and confined to
radials from 75° to 85°, Comparing the two cases, strailn
components, as well as effective strains,were on the orde:r of
4 to 5 times larger for tension elements in the 1/2 kbar cascs
versus 1/4 kbar. Strains this large could be indicative ot

tensile material failure.

Quasi-Transient Analysis

In order to more accurately represent the physical wave
propagation through the tunnel, a triangular loading function
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(as indicated in Ref 1) was incorporated into the analysis.
Two different load rates (supplied by the sponsor) were used,
which are a function of the loading levels.

Figures 28-31 show plastic zone development for quasi-
transient loading. Note the differing values of the fluidity
parameter Yy (0.1l and 1.0) chosen to provide a lower and upper
bound for possible vy values to be determined experimentally.
Recall that y = 1.0 was used in the steady state analysis.
The same Y value is now being used to study a transient
state. This can occur due to the unique set of equations
present in the viscoplastic solution. As employed here,
is truly acting as a time dependent function, rather than as
a so called dummy variable as it was in the steady state
approach. Each figure shows the load history; F vertical

min
(1000 psi in situ load) does not equal Pmin horizontal
(467 psi in situ load). Loads shown are maximum loads (in
situ plus weapons effect). Comparison with the static results
(Figs 20, 21) reveal significantly smaller plastic zones for
both load levels, because the short times modeled do not allow
as much plastic flow as in the steady state analysis. The
size of the 1/4 kbar transient plastic zone was 27% and 47¢

of the static plastic zone for y = 0.1 ana , = 1.0

respectively., For the 1/2 kbar case, 15% and 43% of the

static plastic zone for Yy = 0.1 and = 1.0 respectively.
The plastic zones for 1y = 1.0 (Figs 29, 31) are larger than
the zones for vy = 0.1 (Figs 28, 30) because 4y = 0.1 pro-

vides less plastic flow as dictated by Eq (2.14).
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Recall t <t viscoplastic material behavior as modeled
by che one-dimensional rheological model (Fig 4) allows the
stress level to instantaneously exceed che yield stress due
to the overstress model emplcocyed. Effective stresses o
greater than the yield stress are shown in Figs 32 and 33,
which are plots of 0 versus time for an clement in the plastic
zone., Note the. stresses in the 1/2 kbar case are roughly twice
those in the 1/4 kbar case; both figures reflect a higher <
for y = 0.1 because vy = 1.0 allows more plastic flow and
thus lower stress. This larger amount of plastic flow (y = 1.0)
is also responsible for a larger final ¢ at t = .04/.06scc,
because less elastic strain is available for release during
unloading. Figure 34 compares load =-strain curves between an
element with plastic deformation and one without. The two
curves do not return to zero load because Pmax consists of
both in situ and weapons effect loading. Note that the
element in the plastic zone is straining 3 to 4 times more than
the elastic element. Although a large portion of the plarric
element's strain is recovered, some irreversible strain is
present., This plastic strain is caused by slippage, crushing,
and rearrangement of rock particles.

Figures 35-38 compare Oy stresses along a 45°radiual
for the two load cases with varying y . Figures 39-42
compare o stresses in a similar fashion. The 1/4 kbur
stresses of Figs 35 and 36 converge as ::-vuance away from tno

cutout increases, because only 15% of the vertical leoad 1is
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varying with time. Eighty-nine percent of the 1/4 kbar
horizontal load varies with time; respective percentages for
1/2 kbar loading are 72% and 95%, explaining the much greater
variability in final stresses (Figs 37-42). Note in all cases
that maximum stresses (at t = .03 for 1/4 kbar, and t = .02
for 1/2 kbar) near the cutout exceed the steady state stresses.
One would expect the component stresses to follow o , i.e.,
stresses at t = ,03 for the 1/4 kbar case (t = ,02 for 1/2
kbar) should be a maximum. However, note in Figs 35 and 36
that t = .03 (1/4 kbar) stresses are not consistently the
highest. This 1is another example of the redistribution of
stresses afforded by plastic action.

Finally, note that Figs 40 and 42 show tension (negative

values) for arithmetic average I stresses between elements

for vy 1.0 , 1/4 and 1/2 kbar loading. Although some
tension was developed in the static analysis, the tension
developed for the transient case is much more severe. The
1/2 kbar case, for example, developed 91 tension elements;
these instantaneous tensile stresses may cause cracks which

will not close due to in situ loading «.ter the pressure wave

passes, leading to zones of fallen rock in the tunnel.

A Final Note

Lishop (Ref 1) suggests that the Drucker-Prager yic.d

criterion allows excessive plastic flow. Bishop furthcr
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intimates that this plastic strain error is due to the fact

that large volumetric strains are allowed to occur. From

.Vp -
- y[% - 1:' [a] (2.14)

where for direct (volumetric) strains

Eq (2.14)

.Vp- I ais
€.. = y[',- 1:, L (i = 3) (2.15)
lJ k Z(J‘)z

2
1

Note that o = oJ, + (Ji)2 (yield surface).

1
In an effort to reduce the amount of plastic volumetric

strain, the a term was removed from Fu¢ (2.15) so that

.Vp o E{j
£, , = Y[—’- ]] P (1 = 3) {3.1)
15 k 2(33)°2

Note that by removing o in this fashion, it is still included
in the 0 term which triggers the plastic strain rate calcula-
tion. The Baker, et al (Ref 1ll) 1in situ loading case was
analyzed using Drucker-Prager in this torm and compared aguinst
the earlier analysis.
Figure 43 shows the size of the plastic zone, which was

the same for both forms of the yield ¢riterion. Table 2
compares a representative stress value (oy) and plastic
effective strain for several elements in the plastic zone,
where plastic effective strain is defined as (ket 9)

vp Jg——p—T

“EFF 43 "ijij
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Table 2 shows that the stresses (ox’oz’uxy followed a similar
pattern) as well as most of the effective plastic strains were
less for Eq (3.1) than for the complete Drucker-Prager equation.
The validity of this form of the Drucker-Prager eguations can
only be proven experimentally. However, the fact that smaller

effective strains are predicted is attractive.

TABLE 2

Comparing Eq (3.1) to Complete Drucker-Prager Equations

Element in Eq (3.1} Drucker=-Prager

Plastic Zone oy CEEF oy LEEF
24 1157 .00204 ' 1328 .00367
25 813 .00183 856 .00329
26 1573 .00124 1785 .00159
27 1045 .00135 1185 .00137
28 1910 .00045 2031 .00036
29 1359 .00030 1449 .00028
30 1142 .00183 1313 .00324
31 781 .00158 8433 L0029y
32 1512 .00112 1705 L0013
33 974 .00083 1128 .0010v

J

NOTE: See Fig 43 for Plastic Zone
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VIII. Summary and Conclusions

A two-dimensional plane stress/plane strain finite
element program called VISCO was used to model the stress
field around a deep underground tunnel., The constitutive
equations employed in VISCO were in the form of an elastic-
perfectly plastic material model developed by Drucker and
Prager. Plasficity was generated using the Drucker-Prager
equations incorporated in the Malvern flow law. The following
statements and conclusions are based on the analysis presented
in this paper.

1. Viscoplastic theory can be used to model steady
state elasto-plastic material behavior by setting the fluidity
constant in the strain rate equation to a large value. Results
obtained in this effort for verification purposes agreed
excellently with published results.

2. It is possible to follow the effects of a nuclear
blast using viscoplastic theory for both static and quasi-
transient loading of tunnels buried in tuff. Results produced
for the steady state conditions yielded physical activity
recognized in field tests and experimental work. The transient
andalysis lends an appreciation of possible plastic zone growth
allowing for actual experimental mocdification.

3. Tunnel displacements diffe. . u by extreme amounts
as the load varied in the quasi-static analysis. Springline

displacements were nearly eight times greater, and crown
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displacements were over three times greater for 1/2 kbar
versus 1/4 kbar loading. Deformations will increase as the
size of the plastic zone increases.

4. In the quasi-transient analysis, the size of the
plastic zone is a function of both loading and fluidity
constant. The two fluidity constants used here indicate
trends which may be compared against experimental results.

Because the larger fluidity constant -ll.i's more plastic

flow, less elastic strain is released upon unloading, creating

larger final (t = .06, t = .04) tunnel displacements. For

all cases (both y and at any time) the quasi-transient model

experienced less tunnel deformation than the comparable
loading's static analysis.

5. 1Inaccurately large strains can be developed by any
elastic~-perfectly plastic material model. Reports show that
the Drucker-Prager model may also predict excessive hydro-
static strains. A "modified" Drucker-Frager material model
compared favorably against the actual equations by predicting

smaller plastic strains.
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